Blog Post

Talking Medicines Academic Paper 1 : Classifying Patient Voices

August 30, 2021


The team at Talking Medicines are delighted to have published an academic paper on the methodologies behind the classification of the patient voice by Alex et al. BMC Med Inform Decis Mak (2021) 21:244. This is part of the R&D work that has been completed in the development of the cutting edge commercial platform PatientMetRx® offering Pharma the opportunity to access patient confidence score by medicine brand.

Abstract Background:
Patient-based analysis of social media is a growing research field with the aim of delivering precision medicine but it requires accurate classification of posts relating to patients’ experiences. We motivate the need for this type of classification as a pre-processing step for further analysis of social media data in the context of related work in this area. In this paper we present experiments for a three-way document classification by patient voice, professional voice or other. We present results for a convolutional neural network classifier trained on English data from two different data sources (Reddit and Twitter) and two domains (cardiovascular and skin diseases). Results: We found that document classification by patient voice, professional voice or other can be done consistently manually (0.92 accuracy). Annotators agreed roughly equally for each domain (cardiovascular and skin) but they agreed more when annotating Reddit posts compared to Twitter posts. Best classification performance was obtained when training two separate classifiers for each data source, one for Reddit and one for Twitter posts, when evaluating on in-source test data for both test sets combined with an overall accuracy of 0.95 (and macro-average F1 of 0.92) and an F1-score of 0.95 for patient voice only. Conclusion: The main conclusion resulting from this work is that combining social media data from platforms with different characteristics for training a patient and professional voice classifier does not result in best possible performance. We showed that it is best to train separate models per data source (Reddit and Twitter) instead of a model using the combined training data from both sources. We also found that it is preferable to train separate models per domain (cardiovascular and skin) while showing that the difference to the combined model is only minor (0.01 accuracy). Our highest overall F1-score (0.95) obtained for classifying posts as patient voice is a very good starting point for further analysis of social media data reflecting the experience of patients. Keywords: Patient voice, Professional voice, Social media, Classification, Reddit, Twitter.

To read the full article please go to the online publication

Read More Blogs

Can AI Help You Unlock Strategic Intelligence?

Can AI Help You Unlock Strategic Intelligence?

In a pharmaceutical world driven by data and rapid change, success hinges on understanding the authentic conversations surrounding medications and therapy areas. Strategists need more than surface-level insights—they need the power to decode real-time sentiment and...

read more
AI for Strategic Audience Analysis

AI for Strategic Audience Analysis

In today’s healthcare landscape, connecting effectively with the right audience—whether Patients or Healthcare Providers (HCPs)—is critical. Traditional methods often struggle to capture the nuanced insights needed to craft relevant and impactful messaging. According...

read more